
Massively Parallel Algorithms 
Parallel Sorting 

G. Zachmann 
University of Bremen, Germany 
cgvr.cs.uni-bremen.de 



G. Zachmann 2 Sorting Massively Parallel Algorithms 20 June 2013 SS 

Sorting using Spaghetti in O(1) (?) 

§  Is O(n) really the lower bound for sorting? 

§  Consider the following thought experiment: 

B.  For each number x in the list, cut a spaghetto to  
length x →  list = bundle of spaghetti & unary repr. 

C. Hold the spaghetti loosely in your hand and  
tap them on the kitchen table → takes O(1) ! 

D. Lower your other hand from above until it meets with a spaghetto — 
this one is clearly the longest 

E.  Remove this spaghetto and insert it into the front of the output list 

F.  Repeat 

§  If we would compute using this  
mechanical spaghetti computer,  
then sorting would be O(1) 



G. Zachmann 3 Sorting Massively Parallel Algorithms 20 June 2013 SS 

Difficulties With Parallel Implementation of Standard Sequential Algorithms 

§  Insertion sort: 

§  Considers only one element at a time 

§  Quicksort: 

§  Yes, some parallelism at lower levels of the recursion tree 

§  But, would need median as a pivot element ⟶ hard to find 

§ Otherwise, random pivot element causes varying sub-array sizes 

§  Heapsort: 

§ Only one element at a time 

§  Heap (= recursive data structure) is difficult on mass.-parallel architecture 

§  Radix sort: 

§  Yes, we've seen that already, works well 

§  But, can handle only fixed-length numbers 



G. Zachmann 4 Sorting Massively Parallel Algorithms 20 June 2013 SS 

Assumptions 

§  In this chapter, we will always assume that n = 2k 

§  Elements can have any type, for which there is a comparison 
operator 



G. Zachmann 5 Sorting Massively Parallel Algorithms 20 June 2013 SS 

Sorting Networks 

§  Informal definition of comparator networks: 

§  Consist of a bundle of "wires" 

§  Each wire i carries a data element Di  (e.g., float) from left to right 

§  Two wires can be connected vertically by a comparator 

§  If  Di  > Dj  ∧	  i < j   (i.e., wrong order), 
then Di and Dj  are swapped by the                                              
comparator before they move on  
along the wires 

§  Observation: every comparator network is data independent,  i.e., 
the arrangement of comparators and the running time are always 

the same!  

§  Goal: find a "small" comparator network that performs sorting 
for any input → sorting network 

0 
1 
2 
3 



G. Zachmann 6 Sorting Massively Parallel Algorithms 20 June 2013 SS 

Example 

0 
 
1 
 
2 
 
3 
 
4 
 
5 
 
6 
 
7 

One stage / step 



G. Zachmann 7 Sorting Massively Parallel Algorithms 20 June 2013 SS 

The 0-1 Principle 

§  Definition (monotone function):  
Let A, B be two sets with a total ordering relation,  
and let  f : A → B be a mapping. 
f  is called monotone iff 

§  Lemma: 
Let  f : A → B  be monotone. Then the following holds: 

 
Analogously for the max. 

§  Proof: 
Case 1: 
 
 
Case 2:  

⇥a1, a2 � A : f ( min(a1, a2) ) = min( f (a1), f (a2) )

a1 � a2 ⇥ f (a1) � f (a2)

f ( min(a1, a2) ) = f (a1) = min( f (a1), f (a2) )
min(a1, a2) = a1 , min( f (a1), f (a2) ) = f (a1)

8a1, a2 2 A : a1  a2 ) f (a1)  f (a2)



G. Zachmann 8 Sorting Massively Parallel Algorithms 20 June 2013 SS 

§  Extension of  f : A → B  to sequences over A and B, resp.: 

§  Lemma: 
Let f  be a monotone mapping  and        a comparator network. 
Then       and  f  commute, i.e. 

�n �a0, . . . , an : N
�
f (a)

⇥
= f

�
N (a)

⇥



G. Zachmann 9 Sorting Massively Parallel Algorithms 20 June 2013 SS 

§  Proof: 

§  Let                    be a sequence 

§  Notation: we write a comparator 
connecting wire i  and  j  like so: 

§  Now the following is true: 

a0 
 

i 
 
j 

an 

[i : j ]
�
f (a)

�
= [i : j ]

�
f (a0), . . . , f (an)

�

=

�
f (a0), . . . , min( f (ai), f (aj) )| {z }

i

, . . . , max( f (ai), f (aj) )| {z }
j

, . . . , f (an)
�

=

�
f (a0), . . . , f ( min(ai , aj) ), . . . , f ( max(ai , aj) ), . . . , f (an)

�

= f
�
a0, . . . , min(ai , aj), . . . , max(ai , aj), . . . , an

�

= f
�
[i : j ](a)

�



G. Zachmann 10 Sorting Massively Parallel Algorithms 20 June 2013 SS 

§  Theorem (the 0-1 principle): 
Let       be a comparator network. 
Now, if       sorts every sequence of  0's and  1's, then it also sorts 
every sequence of elements! 



G. Zachmann 11 Sorting Massively Parallel Algorithms 20 June 2013 SS 

§  Proof (by contradiction): 

§  Assumption:       sorts all 0-1 sequences, but does not sort sequence a  

§  Then                      is not sorted correctly, i.e.   

§  Define  f : A → {0,1}  as follows: 

§  Now, the following holds: 

 
 

where a'  is a 0-1 sequence. 

§  But: f (b) is not sorted, because f (bk) = 1 and f (bk+1) = 0 

§  Therefore,              is not sorted as well, in other words, we have 
constructed a  0-1 sequence that is not sorted correctly by       . 

f monotone 



G. Zachmann 12 Sorting Massively Parallel Algorithms 20 June 2013 SS 

Batcher's Odd-Even-Mergesort                  [1968] 

§  In the following, we'll always assume that the length  n  of a 
sequence  a0,…,an-1 is a power of 2, i.e.,  n = 2k 

§  First of all, we define the sub-routine "odd-even merge": 

oem( a0,…,an-1 ): 
precondition:  a0,…,an/2 -1 

 and  an/2 
,…,an-1  are both sorted 

postcondition: a0,…,an-1  is sorted 
if  n = 2: 
    compare [a0:a1]                                     (1) 
if  n > 2: 
    ā ← a0,a2,…,an-2         // = even sub-sequence 
    â ← a1,a3,…,an-1         // = odd sub-sequence 
      ← oem( ā ) 
      ← oem( â )                                         (2) 
    copy   → a0,a2,…,an-2  
    copy   → a1,a3,…,an-1  
    for i  {1,3,5,…,n-3}                                 (3) 
        compare [ai : ai+1] 



G. Zachmann 13 Sorting Massively Parallel Algorithms 20 June 2013 SS 

§  Proof of correctness: 

§  By induction and the 0-1-principle 

§  Base case: n = 2 

§  Induction step:  n = 2k , k > 1 

§  Consider a 0-1-sequence  a0,…,an-1 

§ Write it in two columns 

§  Visualize 0 = white, 1 = grey 

§ Obviously: both ā and â consist of 
two sorted halves →  preconditon of 
oem is met 

§  After line (2) we have this 
situation (the odd sub-sequence can 
have at most two 1's more than the 
even sub-sequence)  

0 1 

2 3 

4 5 

6 7 

8 9 

10 11 

12 13 

14 15 

1st half 
is sorted 

2nd half 
is sorted 

odd sub- 
sequence 

even sub- 
sequence 

2x oem 



G. Zachmann 14 Sorting Massively Parallel Algorithms 20 June 2013 SS 

§  In loop (3), these comparisons  
are made, and there can be only 
3 cases: 

§  Afterwards, one of these two 
situations has been established:  

§  Result: the output sequence is sorted 

§  Conclusion:  
every 0-1-sequence  (meeting the preconditons) is sorted correctly 

§  Running time (sequ.) : 



G. Zachmann 15 Sorting Massively Parallel Algorithms 20 June 2013 SS 

§  The complete general sorting-algorithm: 

 

 

§  Running time (sequ.): 

oemSort(a0,…,an-1): 

if n = 1: 

  return 

a0,…,an/2 -1 
 ← oemSort(a0,…,an/2 -1

) 

an/2 
,…,an-1  ← oemSort(an/2 

,…,an-1) 

oem(a0,…,an-1) 



G. Zachmann 16 Sorting Massively Parallel Algorithms 20 June 2013 SS 

Mapping the Recursion on a Massively-Parallel Architecture 

§  Load data onto the GPU (global memory) 

§  The CPU executes the following controlling program: 

§ With the stride parameter, we can achieve sorting “in situ” 

oemSort(n): 

if n = 1 → return 

oemSort( n/2 ) 

oem( n, 1 ) 

oem( n, stride ): 

if n = 2: 

    launch oemBaseCaseKernel(stride) 

   // launches n parallel threads 

else: 

    oem( n/2, stride*2 ) 

    launch oemRecursionKernel(stride) 



G. Zachmann 17 Sorting Massively Parallel Algorithms 20 June 2013 SS 

§  The kernel for line (3) of the original function oem(): 

§  As usual, thid = thread ID = 0, …, n-1  

oemRecursionKernel( stride ): 

if thid < stride || thid ≥ n-stride: 

    output SortData[thid] 

else: 

    a_i ← SortData[thid] 

    a_j ← SortData[ thid+stride ] 

    if thid/stride is even: 

        output max( a_i, a_j ) 

    else: 

        output min( a_i, a_j ) 



G. Zachmann 18 Sorting Massively Parallel Algorithms 20 June 2013 SS 

§  Kernel for line (1) of the function oem(): 

§  Reminder: this kernel is executed in parallel for each index  thid = 0, …, 
n-1  in a stream 

oemBaseCaseKernel ( stride ): 
i = thid                       // thid = thread ID 
if thid/stride is even:        // are we on even/odd side? 
    j = i + stride 
else: 
    j = i - stride 
a0 ← SortData[i]               // SortData = global array 
a1 ← SortData[j] 
if on even side: 
    SortData[i] = min(a0,a1)   // write output back 
else: 
    SortData[i] = max(a0,a1) 



G. Zachmann 19 Sorting Massively Parallel Algorithms 20 June 2013 SS 

§  Depth complexity: 

§  E.g., for 220 elements this are 210 passes  



G. Zachmann 20 Sorting Massively Parallel Algorithms 20 June 2013 SS 

Bitonic Sorting 

§  Definition "bitonic sequence": 
A sequence of numbers a0, …, an-1  is bitonic  ⇔ 
there is an index i such that 
-  a0, …, ai        is monotonically increasing, and 
-  ai+1, …, an-1  is monotonically decreasing; 
OR  
if there is a cyclic shift of this sequence such that this is the case. 

§  Because of the latter "OR", we understand all index arithmetic in 
the following modulo n,  and/or we assume in the following that 
the sequence(s) have been cyclically shifted as described above 



G. Zachmann 21 Sorting Massively Parallel Algorithms 20 June 2013 SS 

§  Examples of bitonic sequences: 

§  0 2 4 8 10 9 7 5 3  ;  2 4 8 10 9 7 5 3 0  ;  4 8 10 9 7 5 3 0 2  ;  … 

§  10 12 14 20 95 90 60 40  
35 23 18 0 3 5 8 9 

§  1 2 3 4 5 

§  [ ] 

§  00000111110000 ;  
1111100000111111 ;  
1111100000 ; 000011111  

§  These sequences are NOT bitonic sequences: 

§  1 2 3 1 2 3 

§  1 2 3 0 1 2 



G. Zachmann 22 Sorting Massively Parallel Algorithms 20 June 2013 SS 

§  Visual representation of bitonic sequences: 

 

§  Because of the "modulo" index arithmetic, we can also visualize 
them on a circle or cylinder: 

§  Clearly, 
bitonic sequences 
have exactly 
two inflection 
points 

index 
0 n-1 0 n-1 0 n-1 

0 

n/2 

n-1 1 

n/2 - 1 

a0 

an/2 

a1 



G. Zachmann 23 Sorting Massively Parallel Algorithms 20 June 2013 SS 

Properties of Bitonic Sequences 

§  Any sub-sequence of a bitonic sequence is a bitonic sequence 

§ More precisely, assume a0, …, an-1  is bitonic and we have indices 
0 ≤ i1 ≤ i2 ≤ …  ≤ im < n 

§  Then,                               is bitonic, too 

§  If a0, …, an-1 is bitonic, then  an-1 , …, a0   is bitonic, too 

§  BTW: if we mirror a bitonic sequence "upside down", then the new 
sequence is bitonic, too 

§  A bitonic sequence has exactly one local(!) minimum and one 
local maximum 

ai0 , ai1 , . . . , aim



G. Zachmann 24 Sorting Massively Parallel Algorithms 20 June 2013 SS 

Some Notions and Definitions 

§  More precise graphical notation of a comparator: 

§  Definition rotation operator: 
Let                                 , and  j ∈ [1,n-1] . 
We define the rotation operator Rj acting on a as 
 
 

a 

b max(a,b) 

min(a,b) 

a = (a0, . . . , an�1)

Rja = (aj , aj+1, . . . , aj+n�1)



G. Zachmann 25 Sorting Massively Parallel Algorithms 20 June 2013 SS 

§  Definition L / U operator: 
 
 

§  Lemma: 
The L/U operators are rotation invariant, i.e. 
 
 
(Remember that indices are always meant mod n ) 

§  Proof : 
§ We need to show that 

§  This is trivially the case: 

La = (min(a0, a n
2
), . . . , min(a n

2�1, an�1) )

Ua = (max(a0, a n
2
), . . . , max(a n

2�1, an�1) )

La = R�jLRja, and Ua = R�jURja.

RjLa = LRja

LRja =
�
min(aj , aj+ n

2
), . . . , min(a n

2�1, an�1), . . . , min(aj�1, aj�1+ n
2
)
�
= . . .



G. Zachmann 26 Sorting Massively Parallel Algorithms 20 June 2013 SS 

§  Definition half-cleaner: 
A network that takes a as input and outputs ( La , Ua ) 
is called a half-cleaner. 

§  The network that 
 realizes a half-cleaner: 

 

§  Because of the rotation invariance, 
we can depict a half-cleaner on a 
circle: 

§  It always produces La and Ua, 
no matter how a is rotated around the circle! 

a0 

an-1 

an/2 
an/2-1 

La 

Ua 

a0 

an/2 
an/2+1 

a1 



G. Zachmann 27 Sorting Massively Parallel Algorithms 20 June 2013 SS 

§  Theorem 1: 
Given a bitonic input sequence a, the output of a half-cleaner has 
the following properties: 

1.  La and Ua are bitonic, too; 

2.    max{La}  min{Ua}



G. Zachmann 28 Sorting Massively Parallel Algorithms 20 June 2013 SS 

Proof 

§  The half-cleaner does the following: 

1.  Shift (only conceptually) the right half of a over to the left  

2.  Take the point-wise min/max ⟶ La , Ua 

3.  Shift Ua back to the right 

§  Because a is bitonic, there can be only one cross-over point 

§  By construction, both La and Ua must have length n/2 

§  Property 1 follows from the sub-sequence property 

0 n-1 n/2 

La Ua 

0 n-1 n/2 



G. Zachmann 29 Sorting Massively Parallel Algorithms 20 June 2013 SS 

The Bitonic Merger 

§  The half-cleaner is the basic (and only) building block for the 
bitonic sorting network! 

§  The recursive definition of a bitonic merger               : 

§  Input: bitonic  
sequence of  
length n 

§ Output: sorted  
sequence in  
ascending order 

§  Analogously, 
we can define 
 

a0 

an-1 

bi
to

ni
c 

La

Ua

so
rt

ed
 

One half-cleaner stage 

BM"(n)

BM#(n)

BM"(n2)

BM"(n2)

BM"(n)



G. Zachmann 30 Sorting Massively Parallel Algorithms 20 June 2013 SS 

Mapping to Massively Parallel Architecture 

§  We have n = 2k many "lanes" = threads 

§  At each step, each thread needs to figure out its partner for compare/
exchange 

§  This can be done by considering the ID of each process (in binary): 

§  At step j, j = 1, …, k :  partner ID = ID obtained by reversing bit (k-j) of own ID 

§  Example: 
   000  001 -  010  011 --  100  101 - 110  111 

   |    ^      ^            ^ 

   |____|      |            | 

   | k-3       |            | 

   |___________|            | 

   |    k-2                 |  

   |________________________| 

              k-1 



G. Zachmann 35 Sorting Massively Parallel Algorithms 20 June 2013 SS 

The Bitonic Sorter 

§  The recursive definition of a bitonic sorter               : BS"(n)

BS"(n)

a0 

an-1 

un
so

rt
ed

 

so
rt

ed
 

an/2 

an/2-1 

bi
to

ni
c 

BM"(n)

BS#(n/2)

BS"(n/2)



G. Zachmann 36 Sorting Massively Parallel Algorithms 20 June 2013 SS 

Visualizing Bitonic Sorting on a Linear Array 

1: Sort half-arrays in 
opposite directions 

2: Compare half-arrays 

3: Send larger item in 
each pair to the right 

Perform 2 & 3 
recursively on each half 

Initial data sequence 



G. Zachmann 37 Sorting Massively Parallel Algorithms 20 June 2013 SS 

Example Bitonic Sorting Network 


